Catalytic Behavior of Rhodium(I) Complexes in Hydrogermylation and Hydrosilylation of Phenylacetylene

NOTES

Fumio Wada,* Seiji Abe, Norio Yonemaru, Kiyoshi Kikukawa,† and Tsutomu Matsuda Department of Organic Synthesis, Faculty of Engineering, Kyushu University,
Hakozaki, Higashi-ku, Fukuoka 812

† Department of Industrial Chemistry, Faculty of Engineering,
Kinki University in Kyushu, Kayanomori, Iizuka 820

(Received December 17, 1990)

Synopsis. Rhodium complexes, $Rh(L)(C_2H_4)_2$ {L=(CH₃-C=O)₂CH (acac), and (CF₃C=O)₂CH (hfa)}, catalyze hydrogermylation and hydrosilylation of phenylacetylene with Bu_3GeH and R_3SiH (R=Bu, Et), respectively, to produce $Ph(R_3M)C=CH_2$ (M=Ge, Si) selectively. Other rhodium complexes, that is, [RhCl(C₂H₄)₂]₂, Rh₂Cl₂(cod)₂, Rh(tmhd)-(C₂H₄)₂{tmhd= (t-BuC=O)₂CH}, and Rh(dbm)(C₂H₄)₂{dbm= (PhC=O)₂CH}, also catalyze these reactions, but with less regioselectivity.

Hydrosilylation, hydrostannylation, and hydrogermylation of terminal acetylenes under transition metal catalysis have been widely studied¹⁾ because of their potential utility in the synthetic organic chemistry of vinylic organometals with 14(IV B) series elements (Eq. 1).

$$R_3MH + R'-C \equiv CH \xrightarrow{cat.}$$

$$R' = C \equiv CH_2 + R = C \equiv CH = CH = R$$

$$R_3M = R_3M = R_3M = R$$

$$R_3M = R_3M =$$

The selective formation of β -adducts (2) has been thoroughly investigated under transition metal catalysis or radical conditions. ^{1b-e)} However, catalysts yielding α -adduct (1) selectively have not been well-studied, except for rhodium catalysts used for the hydrostannylation of terminal acetylenes. We report here on a new rhodium catalyst which is effective for the selective formation of an α -adduct in the hydrogermylation and hydrosilylation of phenylacetylene.

Experimental

Materials. The rhodium complexes used in the present study were prepared by using ordinary methods, $^{2)}$ and were stored at -25 °C. The solvents and other reagents were purified by distillation before use.

General Procedure. All operation were carried out under a nitrogen atmosphere. The typical procedure was as follows. To a mixture of Rh(hfa)(C_2H_4)₂ {1.46 mg (4.0×10⁻³ mmol)} and CH₂Cl₂ (10 ml) was added phenylacetylene {0.41 g (4.0 mmol)}, and the mixture was stirred at 40 °C for 10 min. Then, (*n*-Bu)₃GeH {0.098 g (0.4 mmol)} was added rapidly and the reaction was monitored by GLC. The reaction products were isolated by short-pass distillation. The characterization and the product distribution of products were determined by ¹H NMR and GLC.

Table 1. Rhodium-Catalyzed Hydrogermylation and Hydrosilylation of PhC≡CHa)

Run	Catalyst ^{b)}	Temp	Time h	PhC≡CH/R ₃ MH (Molar ratio)	Yield ^{c)} %	Products (% ratio)d)	
		°C				1	2 (E/Z)
M=Ge				R=Bu			
1	RhCl(CO)(PPh ₃) ₂	0	6	10	65	7	93 (70/23)
2	RhCl(CO)(PPh ₃) ₂ -galvinoxyl	0	2	10	73	1	99 (91/8)
3	$[RhCl(C_2H_4)_2]_2$	0	0.5	1	84	15	85 (36/49)
4	$[RhCl(C_2H_4)_2]_2$	0	1	10	89	61	39 (20/19)
5	[RhCl(cod)] ₂	40	9	10	88	23	76 (49/27)
6	$Rh(acac)(C_2H_4)_2$	40	0.5	1	89	81	19 (16/1)
7	$Rh(acac)(C_2H_4)_2$	40	0.5	10	91	86	14 (13/1)
8	Rh(acac)(C ₂ H ₄) ₂ -galvinoxyl	40	1	10	96	81	19 (18/1)
9	$Rh(tmhd)(C_2H_4)_2$	40	1	10	96	56	44 (40/4)
10	$Rh(dbm)(C_2H_4)_2$	40	0.5	10	97 ^{d)}	54	46 (43/3)
11	$Rh(hfa)(C_2H_4)_2$	40	1	10	100 ^{d)}	95	5 (4/1)
M=Si				R=Bu			
12	$Rh(acac)(C_2H_4)_2$	40	22	10	77	75	25 (25/0)
13	$Rh(acac)(C_2H_4)_2$	40	33	1	83 ^{d)}	71	29 (25/4)
14	$Rh(tmhd)(C_2H_4)_2$	40	7	10	97	60	40 (39/1)
M=Si	· // //-			R=Et			, , ,
15	$Rh(acac)(C_2H_4)_2$	40	1	10	99 ^{d)}	86	14 (14/0)
16	$Rh(hfa)(C_2H_4)_2$	40	1	10	100 ^{d)}	96	4 (4/0)

a) The reaction was monitored by GLC for it's completion. Isomerization among the isomers did not observed under the conditions. b) One mol% of a catalyst was used. cod=1,5-cyclooctadiene; acac=(CH₃C=O)₂CH; tmhd=(t-BuC=O)₂CH; dbm=(PhC=O)₂CH; hfa=(CF₃C=O)₂CH. c) Isolated yields by short pass distillation based on R₃MH. d) Determined by GLC.

Table 2. Solvent Effects on the frydrogermylation and the frydrosnylation	Table 2.	Solvent Effects of	on the Hydrogermyla	ation and the Hydrosilylation
---	----------	--------------------	---------------------	-------------------------------

C-4-142)	Solvent	Temp	Time	PhC≅CH/R ₃ MH	Yield ^{b)}	Products (% ratio)c)	
Catalyst ^{a)}		°C	h	(Molar ratio)	%	1	2 (E/Z)
M=Ge				R=Bu			
$Rh(acac)(C_2H_4)_2$	CH_2Cl_2	40	0.5	1	89	81	19 (16/3)
, ,, ,	THF	40	6	1	98	43	57 (38/19)
	C_6H_6	40	9	1	95	41	59 (44/15)
M=Si				R=Et			` , ,
$Rh(acac)(C_2H_4)_2$	CH_2Cl_2	40	1	10	99	86	14 (14/0)
	CH ₂ ClCH ₂ Cl	65	3	10	94	79	21 (19/2)
	THF	40	1	1	89	48	52 (37/15)
	C_6H_6	65	1	1	86	46	54 (45/9)
	C_6H_6	40	3	1	80	50	50 (40/10)

a) One mol\% of the catalyst was used. b) Isolated yields by short pass distillation based on R₃MH. c) Determined by GLC.

Hydrosilylation was also carried out by the same method mentioned above.

Results and Discussion

Rhodium complexes {RhClL3, RhCl(CO)L2, [RhCl-(cod)]2; L=PPh3} were previously found to catalyze the hydrostannylation of acetylene with Bu₃SnH to produce an α-adduct, Ph(Bu₃Sn)C=CH₂ selectively, and a combination of galvinoxyl (radical inhibitor) and RhCl-(CO)(PPh₃)₂ in the hydrostannylation of phenylacetylene proved to give an α -adduct exclusively in excellent yield.3) In the hydrogermylation of phenylacetylene, however, these catalysts gave β -adducts (2) as the main products, and the presence of the radical inhibitor suppressed the formation of the α -adduct and (Z)- β adduct, as shown in Table 1 (Run 2). When we used a large excess of PhC≡CH to Bu₃GeH (>10), only [RhCl- $(C_2H_4)_2$ produced the α -adduct with moderate selectivity (61%), probably because of an effective exchange of the ethylene with PhC≡CH.

Interestingly, Rh(acac)(C₂H₄)₂, in which chloride in $[RhCl(C_2H_4)]_2$ is replaced by acetylacetonate, gave the α adduct in good yields, irrespective of the molar ratio of PhC≡CH/R₃GeH, although the catalytic activity was somewhat less than that of $[RhCl(C_2H_4)_2]_2$. The catalyst also acted as an effective catalyst for the hydrosilylation of PhC≡CH with R₃SiH (R=Bu, Et) under the same conditions as those in hydrogermylation, but not for hydrostannylation. When we used (CF₃C=O)₂CH instead of acac as a β -diketonate ligand, the regioselectivity toward the α -adduct in both reaction systems was greatly improved (select.=ca. 95%). On the other hand, the other complexes with a bulky β -diketonate ligand, that is $Rh(tmhd)(C_2H_4)_2$ and $Rh(dbm)(C_2H_4)_2$, also catalyzed both reactions, but with less selectivity. These results indicate that the regioselectivity in both reaction systems is influenced by both electronic and steric effects of the ligands around the rhodium metal. In this catalyst system, the reaction temperature and solvent also affected the regioselectivity toward the α -adduct. example, in the Rh(acac)(C_2H_4)₂ catalyst system, as shown in Table 2, dichloromethane having a small coordination ability was found to be appropriate as a reaction medium.

Compared with Bu₃GeH, Bu₃SiH required a longer

reaction time because of the less reactivity of Bu_3SiH , and the regioselectivity toward the α -adduct was somewhat less than that of Bu_3GeH (Runs 7 and 12). However, with less crowded triethylsilane, Et_3SiH , regioselectivity toward the α -adduct increased, giving almost the same selectivity to that of Bu_3GeH . The solvent effect was almost the same with that in the hydrogermylation as shown in Table 2.

The Rh(acac)(C_2H_4)₂ system proved to give Ph(Bu₃M)C=CHD (M=Ge, Si) stereoselectively in the reaction of PhC=CD with Bu₃GeH and Bu₃SiH, respectively (Eq. 2).

This result supports the *syn*-addition process in the present α -directive hydrogermylation and hydrosilylation which is generally observed in the transition metal-catalyzed hydrostannylation⁴⁾ and hydrosilylation.⁵⁾

The catalytic behaviors of $Rh(acac)(C_2H_4)_2$ and $Rh(hfa)(C_2H_4)_2$ for α -adduct selectivity have not get been clarified. Consequently, $Rh(hfa)(C_2H_4)_2$ is a useful catalyst which provides a simple method for the preparation of $Ph(R_3M)C=CH_2$ (M=Ge,Si;R=Bu,Et) with regard to the starting materials and procedures.

References

1) a) R. J. P. Corriu and J. E. Morean, *J. Organomet. Chem.*, **40**, 73 (1972); b) Y. Ichinose, H. Oda, K. Oshima, and K. Uchimoto, *Bull. Chem. Soc. Jpn.*, **60**, 3468 (1987); c) A. J. Leusink and H. A. Budding, *J. Organomet. Chem.*, **11**, 533 (1968); d) T. K. Gar, A. A. Buyakov, A. V. Kisin, and V. F. Mironov, *Zh. Obsch. Khim.*, **41**, 1589 (1971); e) R. A. Benkeser, M. L. Burrous, L. E. Nelson, and J. V. Swisfer, *J. Am. Chem. Soc.*, **83**, 4385 (1961); f) R. A. Benkeser and R. A. Hickner, *J. Am. Chem. Soc.*, **80**, 5298 (1958); g) J. E. Hill and T. A. Nile, *J. Organomet. Chem.*, **137**, 293 (1977); h) M. Green, J. L. Spences, and F. G. A. Stone, *J. Chem. Soc., Dalton Trans.*, **1977**, 1525; and i) "Comprehensive Organometallic Chemistry," ed by G.

Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon Press, Oxford (1982), Vol. 2.

- 2) a) Rh(hfa)(C₂H₄)₂; B. T. Golding and C. Pierpoint, J. Chem. Soc., Dalton Trans., **1984**, 219. b) Rh(acac)(C₂H₄)₂; R. Cramer, J. Am. Chem. Soc., **86**, 217 (1964). c) RhCl-(CO)(PPh₃)₂; D. Evans, J. A. Osborn, and G. Wilkinson, *Inorg*. Synth., 11, 99 (1968).
- 3) K. Kikukawa, H. Umekawa, F. Wada, and T. Matsuda, Chem. Lett., 1988, 881.
- 4) R. A. Benkeser, *Pure Appl. Chem.*, 13, 133 (1966).
 5) K. Tamao, J. Yoshida, M. Yamamoto, T. Kakui, H. Matsumoto, M. Takahashi, A. Kurita, M. Murata, and M. Kumada, *Organometallics*, 1, 355 (1982).